Dehydroepiandrosterone stimulates glucose uptake in human and murine adipocytes by inducing GLUT1 and GLUT4 translocation to the plasma membrane.

نویسندگان

  • Sebastio Perrini
  • Annalisa Natalicchio
  • Luigi Laviola
  • Gaetana Belsanti
  • Carmela Montrone
  • Angelo Cignarelli
  • Vincenza Minielli
  • Maria Grano
  • Giovanni De Pergola
  • Riccardo Giorgino
  • Francesco Giorgino
چکیده

Dehydroepiandrosterone (DHEA) has been shown to modulate glucose utilization in humans and animals, but the mechanisms of DHEA action have not been clarified. We show that DHEA induces a dose- and time-dependent increase in glucose transport rates in both 3T3-L1 and human adipocytes with maximal effects at 2 h. Exposure of adipocytes to DHEA does not result in changes of total GLUT4 and GLUT1 protein levels. However, it does result in significant increases of these glucose transporters in the plasma membrane. In 3T3-L1 adipocytes, DHEA increases tyrosine phosphorylation of insulin receptor substrate (IRS)-1 and IRS-2 and stimulates IRS-1- and IRS-2-associated phosphatidylinositol (PI) 3-kinase activity with no effects on either insulin receptor or Akt phosphorylation. In addition, DHEA causes significant increases of cytosolic Ca(2+) concentrations and a parallel activation of protein kinase C (PKC)-beta(2). The effects of DHEA are abrogated by pretreatment of adipocytes with PI 3-kinase and phospholipase C gamma inhibitors, as well as by inhibitors of Ca(2+)-dependent PKC isoforms, including a specific PKC-beta inhibitor. Thus, DHEA increases glucose uptake in both human and 3T3-L1 adipocytes by stimulating GLUT4 and GLUT1 translocation to the plasma membrane. PI 3-kinase, phospholipase C gamma, and the conventional PKC-beta(2) seem to be involved in DHEA effects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Separation of insulin signaling into distinct GLUT4 translocation and activation steps.

GLUT4 (glucose transporter 4) plays a pivotal role in insulin-induced glucose uptake to maintain normal blood glucose levels. Here, we report that a cell-permeable phosphoinositide-binding peptide induced GLUT4 translocation to the plasma membrane without inhibiting IRAP (insulin-responsive aminopeptidase) endocytosis. However, unlike insulin treatment, the peptide treatment did not increase gl...

متن کامل

Dimethyl sulfoxide enhances GLUT4 translocation through a reduction in GLUT4 endocytosis in insulin-stimulated 3T3-L1 adipocytes.

Insulin increases muscle and fat cell glucose uptake by inducing the translocation of glucose transporter GLUT4 from intracellular compartments to the plasma membrane. Here, we have demonstrated that in 3T3-L1 adipocytes, DMSO at concentrations higher than 7.5% augmented cell surface GLUT4 levels in the absence and presence of insulin, but that at lower concentrations, DMSO only enhanced GLUT4 ...

متن کامل

Adrenergic receptor stimulation attenuates insulin-stimulated glucose uptake in 3T3-L1 adipocytes by inhibiting GLUT4 translocation.

Activation of the sympathetic nervous system inhibits insulin-stimulated glucose uptake. However, the underlying mechanisms are incompletely understood. Therefore, we studied the effects of catecholamines on insulin-stimulated glucose uptake and insulin-stimulated translocation of GLUT4 to the plasma membrane in 3T3-L1 adipocytes. We found that epinephrine (1 microM) nearly halved insulin-stimu...

متن کامل

Distinct signals in the GLUT4 glucose transporter for internalization and for targeting to an insulin-responsive compartment

In adipose and muscle cells, insulin stimulates a rapid and dramatic increase in glucose uptake, primarily by promoting the redistribution of the GLUT4 glucose transporter from its intracellular storage site to the plasma membrane. In contrast, the more ubiquitously expressed isoform GLUT1 is localized at the cell surface in the basal state, and shows a less dramatic translocation in response t...

متن کامل

A Serum Factor Induces Insulin-Independent Translocation of GLUT4 to the Cell Surface which Is Maintained in Insulin Resistance

In response to insulin, glucose transporter GLUT4 translocates from intracellular compartments towards the plasma membrane where it enhances cellular glucose uptake. Here, we show that sera from various species contain a factor that dose-dependently induces GLUT4 translocation and glucose uptake in 3T3-L1 adipocytes, human adipocytes, myoblasts and myotubes. Notably, the effect of this factor o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diabetes

دوره 53 1  شماره 

صفحات  -

تاریخ انتشار 2004